Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cyclic Quadrilaterals

Age 11 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Cyclic Quadrilaterals printable sheet
Printable sheets of circles: 9 dot  10 dot   12 dot  15 dot  18 dot


In the GeoGebra interactivity below there is a circle with 9 equally spaced points on the edge, and one in the centre.

Draw as many different triangles as you can, by joining the centre dot and any two of the dots on the edge.



Can you work out the angles in your triangles?

 

 


You should have found four different triangles with angles of:
40, 70, 70
80, 50, 50
120, 30, 30,
160, 10, 10
 

 


Now draw a few quadrilaterals whose interior contains the centre of the circle, by joining four dots on the edge.

Can you work out the angles of your quadrilaterals?

If you're finding it hard to work out the angles, take a look at Getting Started.

Create at least five different quadrilaterals in this way and work out their angles.



What do you notice about the angles on opposite vertices of your quadrilaterals?

Perhaps you are wondering whether this only happens with 9-dot circles...

You may wish to explore the opposite angles of quadrilaterals on circles with a different number of dots.

Click below for interactivities with 10, 12, 15 and 18 dots around the circle.

10 dots

 

 


12 dots

 


15 dots

 


18 dots

 


Extension:

Will the same happen if you draw a circle and choose four points at random to form a quadrilateral?


To prove that the opposite angles of all cyclic quadrilaterals add to $180^\circ$ go to Cyclic Quadrilaterals Proof


Quadrilaterals whose vertices lie on the edge of a circle are called Cyclic Quadrilaterals.


You may be interested in the other problems in our Sharpen your Skills Feature.
 

 

You may also like

Calendar Capers

Choose any three by three square of dates on a calendar page...

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo