Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Parabolic Patterns

Age 14 to 18
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We have had solutions from Fiona, a Year 10 student from Stamford High School (Lincolnshire), and from Bei Guo, Kristin and Ryan from Riccarton High School in Christchurch (New Zealand). Well done to you all

They all noticed that the parabolas could be treated as three separate sets of five parabolas.

Starting with $y = x^2$, the parabola going through the origin, they noticed that it could be raised or lowered to produce the rest of the parabolas in the middle set by either adding or subtracting a $2$ or a $4$.

Therefore the solutions for the middle set are:

$y = x^2$
$y = x^2 + 2$
$y = x^2 + 4$
$y = x^2 - 2$
$y = x^2 - 4$

Then they used the other equation that had been given, $y = - (x - 4)^2$ , and found that it gave one of the parabolas in the right hand set.

$y = - (x^2 )$ is a reflection of $y = x^2$ in the horizontal axis, so that is why the new parabola was an inverted version of the original one.

$y = (x - 4)^2$ is a translation of $y = x^2$ by $4$ units to the right, so that is why the new parabola was the inverted parabola shifted $4$ units to the right.

As before, they noticed that $y = - (x - 4)^2$ could be raised or lowered to produce the rest of the parabolas in the right hand set by either adding or subtracting a $2$ or a $4$.

Therefore the solutions for the right hand set are:

$y = - (x - 4)^2$
$y = - (x - 4)^2 + 2$
$y = - (x - 4)^2 + 4$
$y = - (x - 4)^2 - 2$
$y = - (x - 4) ^2 - 4$

Finally, they noticed that the left hand set of parabolas were a reflection of the right hand set in the vertical axis. Therefore, they reasoned that the parabola that went through $(- 4, 0)$ would be $y = - (x + 4)^2$ : the negative sign in front of the brackets produces the inverted parabola, and the $+ 4$ inside the bracket translates it $4$ units to the left.

As before, they noticed that $y = - (x + 4)^2$ could be raised or lowered to produce the rest of the parabolas in the left hand set by either adding or subtracting a $2$ or a $4$.

Therefore the solutions for the left hand set are:

$y = - (x + 4)^2$
$y = - (x + 4)^2 + 2$
$y = - (x + 4)^2 + 4$
$y = - (x + 4)^2 - 2$
$y = - (x + 4)^2 - 4$


You may also like

Cubic Spin

Prove that the graph of f(x) = x^3 - 6x^2 +9x +1 has rotational symmetry. Do graphs of all cubics have rotational symmetry?

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

More Parabolic Patterns

The illustration shows the graphs of twelve functions. Three of them have equations y=x^2, x=y^2 and x=-y^2+2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo