Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pick's Theorem

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Pick's Theorem printable worksheet
To work on this problem you may want to print out some dotty paper


When the dots on square dotty paper are joined by straight lines the enclosed figures have dots on their perimeter ($p$) and often internal ($i$) ones as well.

Figures can be described in this way: $(p, i)$.
For example, the red square has a $(p,i)$ of $(4,0)$, the grey triangle $(3,1)$, the green triangle $(5,0)$ and the blue hexagon $(6,4)$:

 



Each figure you produce will always enclose an area ($A$) of the square dotty paper.

The examples in the diagram have areas of $1$, $1 {1 \over 2}$, and $6$ sq units.

Check that you agree.

Draw more figures and keep a record of their perimeter points ($p$), interior points ($i$) and areas ($A$).

Can you find a relationship between these three variables?

Can you find the area of any polygon once you know the number of perimeter points and interior points?

 

Click here for a poster of this problem.

 

Related Collections

  • Noticing Patterns
  • Noticing Patterns (Teacher)
  • Working Systematically - Lower Secondary
  • Noticing Patterns

You may also like

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo