Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sketching Graphs - Transformations

Age 16 to 18
Challenge Level Yellow star

One useful and important technique in graph sketching is to consider transformation of functions. If you know the basic shape of a function, you can use that to work out what translations, reflections or stretches of that function will look like.

Watch the video below for an explanation of how the graph $y=x^2$ can be transformed by simple translations.



The video shows what happens when we add something to a function or variable. But what if we multiply?
Can you think of a clear way to explain how the graphs $y=f(2x)$ and $y=2f(x)$ are related to the graph $y=f(x)$?

Now, using some graphing software such as GeoGebra, or Desmos, have a go at some of the following challenges:

Parabolic Patterns
Parabolas Again
Cubics
Tangled Trig Graphs
 

Related Collections

  • Other videos

You may also like

Whirlyball

Whirl a conker around in a horizontal circle on a piece of string. What is the smallest angular speed with which it can whirl?

Impossible Square?

Can you make a square from these triangles?

Impossible Triangles?

Which of these triangular jigsaws are impossible to finish?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo