Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Binomial

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?
The problem gives practice in using the notation for Binomial coefficients and manipulating algebraic expressions. In problem solving mode, if they can't get started, they might first try to work on the formula for small integer values of $n$.

Possible approach
Use as a revision exercise.

Key questions

If ${2n \choose n}$ is a binomial coefficient in the expansion of some power of $(1 + x)$ what can you say about the expansion and about the term where it occurs?

What do we know about ${n\choose r}$ and ${n\choose n-r}$?
Possible support

Ask learners to find the coefficient of $x^2$ in the expansion of $(1+x)^4$, the coefficient of $x^3$ in the expansion of $(1 +x)^6$ and then the coefficient of $x^4$ in the expansion of $(1 + x)^8$ and then ask them to try to connect their results to the problem given.

It might help to do the problem Summit first.

You could ask students to show that the sum of the $n$th row in Pascal's Triangle is $2^n$ first - so that they have a sense of achievement even if they don't succeed in proving the result in this problem.


You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

Remainder Hunt

What are the possible remainders when the 100-th power of an integer is divided by 125?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo