Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Binomial

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Well done Ang Zhi Ping from River Valley High School, Singapore for your excellent solution to this question.

Let the binomial coefficient $n!/r!(n-r)!$ be denoted by \begin{equation}{n\choose r}.\end{equation}

By considering powers of $(1 + x)$ show that \[\sum_{k=0}^n {n\choose k}^2 = {2n \choose n}\]

As $(1 + x)^n(1 + x)^n = (1 + x)^{2n} \quad (1) $, we write down the Binomial expansion giving: \begin{equation*}\left[\sum_{p=0}^n {n\choose p} x^p\right]\left[\sum_{q=0}^n {n\choose q} x^q\right] = \sum_{r=0}^{2n} {2n\choose r}x^r. \end{equation*} The left hand side of the equation is \begin{equation*}\left[{n\choose 0} + {n\choose 1}x + \cdots + {n\choose n}x^n\right] \left[{n\choose 0} + {n\choose 1}x + \cdots + {n\choose n}x^n\right].\end{equation*} So the coefficient of $x^n$ on the left hand side of (1) is \begin{equation*}{n\choose 0}{n\choose n} + {n\choose 1}{n\choose n-1} + {n\choose 2}{n\choose n-2} + \cdots +{n\choose n-1}{n\choose 1} + {n\choose n}{n\choose 0}.\end{equation*} Since \begin{equation}{n\choose r} = {n\choose n-r}\end{equation} we see that the coefficient of $x^n$ on the left hand side of (1) is \begin{equation}\sum_{k=0}^n {n\choose k}^2.\end{equation} As the coefficient of $x^n$ on the right hand side of (1) is \begin{equation}{2n\choose n}\end{equation} the given formula is proven.

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

Remainder Hunt

What are the possible remainders when the 100-th power of an integer is divided by 125?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo