Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Data Chunks

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

blue yellow data stream


The situation : You have access to a communications link which you share with other users.

The link sends a stream of data in pulses at set intervals - a little like an escalator where each step carries a character.

The data you need to send comes in chunks of two different sizes - a yellow chunk has $5$ characters and a blue chunk has $9$ characters.

Slots in the data stream become available and you have to decide if you can use them efficiently with your yellow and blue data chunks.

For example a $180$ character slot could take $20$ blue chunks.

And a $78$ character slot could take $3$ yellow and $7$ blue chunks.

Slots come up very frequently so its only worth taking the ones you can fill exactly.

For example a slot of size $31$ cannot be exactly filled with a combination of yellow and blue chunks.

Begin by exploring what slot sizes near to $31$ can, or cannot, be exactly filled.

Don't rush that, but when you have a good feel for the problem move on to generalise this situation.

Your two chunks are not necessarily lengths of $5$ or $9$ characters.

Whatever two lengths you choose there will be slot sizes you cannot exactly fill.

Investigate how the two chunk lengths determine the slot sizes that will or will not work.

Describe your findings

You may find the Excel file Data Chunks useful.

If you spend a moment looking at the numbers you'll soon see how this spreadsheet file works.

There is also something you should know about spreadsheets and mathematical thinking:

Using ICT is often brilliant for getting lots of results fast, leaving your mind free to think about what's going on, but doing some calculating yourself gives you an on-the-ground feel for the process.

So the trick is to use both approaches, getting the benefit from each.

The Data Chunks problem is a challenge.

It takes time and determination, but if you've enjoyed wrestling with it then we feel confident that you'll want to see these links below.

There is an NRICH article by Alan and Toni Beardon about Euclid's Algorithm.

Click for Part One then there's a Part Two to take you on further.

Another article, this time by Vicky Neale and Matthew Buckley is about Modular Arithmetic

Yet another by Vicky is called Introductory Number Theory

Enjoy.


You may also like

Euler's Squares

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo