Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Who is the fairest of them all ?

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem is the third of three related problems. The first problem is Mirror, Mirror... , and the second is ...on the Wall . All three problems ask students to consider the effect of combining two transformations, and then challenge them to describe the single transformations that produce the same results.

This problem follows on from the other two but works equally well on its own. It could be used as extension work for students learning to draw enlargements from a centre of enlargement, using fractional scale factors.

Alternatively, this problem/series of problems could provide suitable task(s) for a unit of work on combined transformations. Some knowledge of vector algebra might be useful for students attempting a full proof.

Possible approach

This printable resource may be useful: Who is the Fairest of Them All?. 

As an extension task, all that is needed is to provide the problem as a worksheet to pairs of students who could then make sense of it together. When they have established the combined transformation for one specific example, a teacher intervention may be appropriate, to move the focus to the general case, asking the key questions below.

With a full class, encourage different students to start with different flag positions. The teacher intervention above could become a full class discussion. In theory, all students will have the same combined transformation, which should be a perfect moment for a comment on evidence versus proof.

Key questions

What if the flag was in a different place?

What if you used the other point first?
What if the points were moved?
What, precisely, does the final position of the flag depend on?

 

Possible support

Spend time drawing accurate enlargements. In theclass/groupevery enlargement could be drawn on paper with full details written on and signed; then every student could alternate between doing an enlargement and checking one off the pile.

 

Possible extension

Ask students to summarise their findings in exactly 20 words (!) then ask if there is anything further that might be varied.

Ask (suitably experienced) students to create a dynamic geometry file that demonstrates their findings.

 

You may also like

Hex

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

Transformation Game

Why not challenge a friend to play this transformation game?

Growing Rectangles

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo