Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Partly Circles

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem brings together some key ideas including the value of similar triangles, employing useful lines, some algebra and that problems can be solved even when information seems limited. The problem can be used to make sense of other people's mathematical arguments. The aim of bringing the three problems together is to encourage discussion about their links and connectedness and therefore investigate relationships between problems and problem-solving experiences.

Possible approach

This printable worksheet may be useful: Partly Circles.
The first problem is designed to draw attention to similar triangles and to see these learners need to add lines.
Present the problem and give time for reflection and then discussion. If ideas are not forthcoming suggest the addition of two lines (you might add them to the diagram without discussion) and then use of angles in the same segment. If necessary spend some time adding and removing pairs of lines talking about what is known about the triangles created:

  • They are right-angled
  • They have equal angles
  • They are similar

Consider other ways of writing the result or substitute integers for three of the letters asking what the fourth must be (if a=$3$, b=$5$ and c=$6$ what must d be?)

The next two problems can be tackled in any order, and the images in Getting Started might help stimulate discussion.

Once solutions for all three problems are available spend time discussing connections learners can make and those that are worth drawing particular attention to.

Key questions

What lines can you draw that highlight additional properties

Can you identify similar triangles?

What do the first and scond problems have in common?

How about the second and last problems?

Can you think of other problems where you have used similar ideas?

Possible support

Use some, or all, of the images in the Getting Started section to help learners in structuring their own solutions using the images and statements on offer. Then focus on what is the same and what is different about each of the three problems.


Possible extension


Allow learners time to work on the problems with limited support and focus on what they see as "key moments" that helped them to solving the problems.

 

You may also like

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

Look Before You Leap

Can you spot a cunning way to work out the missing length?

Triangle Midpoints

You are only given the three midpoints of the sides of a triangle. How can you construct the original triangle?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo