Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Symmetricality

Age 14 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

 

Why do this problem?

The sets of simultaneous equations in this problem have an underlying symmetry which can be exploited in order to solve them more efficiently than by using standard elimination/substitution techniques. Although it is no more difficult than a standard simultaneous equations problem, the unfamiliarity requires students to think creatively. When working on simultaneous equations, it's good for students to see non-standard examples like this one.

Possible approach

This problem featured in the NRICH Secondary webinar in June 2022.

Display the system of equations:

$a+b = 1$
$b+c = 2$
$c+a =-1$
 

"Here are three equations with three unknowns.
Can you find values for a, b and c that solve all three equations simultaneously?"

Give students some time to work with a partner to try possible approaches. They may use trial and improvement, or they may use substitution and elimination.

Once students have had time to tackle the problem, share approaches.

One rather cunning method is to add all three equations together, to give $2a+2b+2c = 2$, so $a+b+c = 1$, and then subtract pairs of equations to find each letter. If no-one comes up with this method, you may wish to show it to them. Then challenge your students to use and adapt this cunning method to solve the three sets of simultaneous equations in the problem.

You may want to mention that there may be more than one solution set for some sets of simultaneous equations.

Key questions

What do you notice when you add the five equations?
What do you notice when you multiply the equations? 

Possible support

Arithmagons and Multiplication Arithmagons invite students to solve a similar system in a context, with fewer variables.
 

Possible extension

Students may find Intersections a thought-provoking challenge on simultaneous equations.

 

 

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Overturning Fracsum

Can you solve the system of equations to find the values of x, y and z?

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo