Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Why Multiply When You're about to Divide?

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions

1a) During one round of PCR, the DNA double helix is separated into its constituent strands, and new strands are built up against each of these. The final products are two helices, and so the DNA content of the cell doubles.

b) If there is originally 1mg of DNA in the sample, 30 rounds of PCR, will lead to doubling thirty times:

$Mass_{final} = 0.001 \times 2^{15} = 32.8$g of DNA

c) We must first calculate the number of moles of DNA in the sample:

$Moles = \text{concentration} \times \text{volume} = 0.1 \times 10^{-12} \times 0.5 \times 10^{-3} = 5 \times 10^{-17}$ moles DNA

The number of molecules of DNA is calculated by multiplying moles by Avogadro's number:

$Molecules = 5 \times 10^{-17} \times 6.02 \times 10^{23} = 3.01 \times 10^7$

Thus to work out the number of rounds of PCR necessary:

$3.01 \times 10^7 \times 2^n = 10^{12}$
$2^n = \frac{10^{12}}{3.01 \times 10^7}$
$n = \frac{ln(\frac{10^{12}}{3.01 \times 10^7})}{ln(2)} = 15.02$

Therefore, we require 16 rounds of PCR to exceed $10^{12}$ molecules of DNA.


2a) Number of minutes = $\frac{24000}{6000} = 4$

b) In the first round of PCR, we will incorporate $2 \times 24000 = 48000$ bases into DNA. In the next round there will be four template strands, and so $4 \times 24000 = 96000$ bases will be incorporated into DNA. Thus over a total of ten rounds:

Number of incorporated bases = $ 24000 \times ( 2^1 + 2^2 +2^3 +...+2^{10})$

The part in brackets is a geometric series, which can be summed as follows:

Let $ x = 2^1 + 2^2 +2^3 +...+2^{10}$
Then $2x = 2^2 +2^3 +2^4 +...+2^{11}$

$\therefore 2x -x = 2^{11} - 2$
$\rightarrow x = 2^{11} -2= 2(2^{10} - 1)$

Thus, the number of incorporated bases = $24000 \times 2(2^{10} -1)= 48000(2^{10} -1) = 4.91 \times 10^7$


3) Solving the restriction map is done by partly by trial and error, and partly by building the map up with more and more information until the solution is found:



You may also like

Very Old Man

Is the age of this very old man statistically believable?

bioNRICH

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your study of biology at A-level and university.

Catalyse That!

Can you work out how to produce the right amount of chemical in a temperature-dependent reaction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo