Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sitting Pretty

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We received many good solutions of this question. They either use the properties of the area of triangles or similar triangles to solve the problem.

Emile from CNDL and John from South Island School (Hong Kong) used the area of triangles to solve the problem. Emile writes:



$xy/ 2$ is the area of the triangle ABC. You can also divide the triangle in to two triangles AB and CBO with area $rx/2$ and $ry/2$ respectively. Thus, we have
$$xy/2=rx/2+ry/2\;.$$ Thus,
$$
\begin{align}
xy&=rx+ry\\
xy&=r(x+y)\\
1/r&=(x+y)/xy\\
1/r&=1/x+1/y\;.\\
\end{align}
$$

Rachel, Emily, Samantha and Kri from Millais School, Ciaran from St Patrick's School, Wilson's School Maths Club and Nathanael used similar triangles to solve this problem. This is the solution from Ciaran of St Patrick's school.


AB and BC are tangents to the circle, thus ON and OM are perpendicular to BC and AB. Thus triangle ONC and triangle ABC are similar since they share the same angle C and both have a right angle. $ON = r$ and $NC = y-r.$ Thus,
$$
\begin{align}
r/(y-r) &= x/y\\
ry &= xy -rx\\
ry + rx &= xy\\
xy&=r(x+y)\\
1/r&=(x+y)/xy\\
1/r&=1/x+1/y
\end{align}
$$

and the rest of the solution is the same as Emile's.



Congratulations to all of you who did it correctly.





You may also like

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

Look Before You Leap

Can you spot a cunning way to work out the missing length?

Triangle Midpoints

You are only given the three midpoints of the sides of a triangle. How can you construct the original triangle?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo