Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sitting Pretty

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem :

This problem offers students a valuable context in which to visualise the effect of constraints (the fact that the centre of the circle is on the hypotenuse). They can be encouraged to establish the relationships within the context (for example by utilising properties of similar triangles), and then find a way to use those to make a route to a solution, which might include working backwards as well as algebraic manipulation.

Possible approach :

This printable worksheet may be useful: Sitting Pretty

Invite the group to visualise the circle, perhaps rolling into place. Draw attention to its size and position and identify the constraints under which this circle exists.

You might wish to invite learners to try fixing the radius of the circle (at 3cm say) and constructing triangles around it.

  • What possible values can x and y have and does the relationship hold in these cases?
  • Do they notice anything about the relationship between x and y?
  • How many possible values of x and y can there be, and does the relationship hold for any of them?

Ask students to create their own diagram. The questions below at the right moment may help to steer the thought process with a light touch. Adding lines that represent the constraints of the situation will be helpful, so students must feel free to redraw their diagrams until they are happy that they have arrived at a good representation.

Key questions :

  • Look at your diagram, what's there that might help ?
  • What's there anyway ?
  • Paying attention to any triangles in your diagram, what do you think about the relationship between them. What might be true ?
  • Is it ? Why ?
  • How might that help ?
  • What is it that this problem asks us to find out ?

Possible support :

Some students might not immediately be ready for this because they are not sufficiently familiar with the similar triangle context, but it is more likely that the algebra demand is too great. It may be that this problem works well as a 'guided example' where the teacher still asks questions, and shares the 'blocks', which at each point need to be identified and a way ahead sought, but takes the group on a pre-determined journey to the solution. Perhaps asking learners to work with some real values to explore possibilities and verify the relationship for these cases.

 

Possible extension :

Partly Circles is another challenging problem where students can apply their understanding of circle geometry.

 

You may also like

Fitting In

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest equilateral triangle which fits into a circle is LMN and PQR is an equilateral triangle with P and Q on the line LM and R on the circumference of the circle. Show that LM = 3PQ

Look Before You Leap

Can you spot a cunning way to work out the missing length?

Triangle Midpoints

You are only given the three midpoints of the sides of a triangle. How can you construct the original triangle?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo