Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Geometric Parabola

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources




Oliver has been experimenting with quadratic equations of the form: $$y=ax^2+2bx+c$$ Oliver chose values of $a, b$ and $c$ by taking three consecutive terms from the sequence: $$1, 2, 4, 8, 16, 32...$$ Try plotting some graphs based on Oliver's quadratic equations, for different sets of consecutive terms from his sequence.


Do you notice anything interesting?


Can you make any generalisations? Can you prove them?


Oliver's sequence is an example of a geometrical sequence, created by taking a number and then repeatedly multiplying by a common ratio. Oliver's sequence starts at $1$ and has common ratio $2$ (each number in the sequence is $2$ times the previous number).


Create some more geometrical sequences and substitute consecutive terms into Oliver's quadratic equation.


Here are some questions you might like to explore:


Can you make any predictions about the graph from the geometric sequence you use to generate the equation?


What if the common ratio is a fraction, or a negative number?


What if the starting number for your geometric sequence is a fraction, or a negative number?


Can you make any generalisations? Can you prove them?





You may wish to use graphing software such as the free-to-download Geogebra to investigate the graphs.

















You may also like

Converse

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo