Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Geometric Parabola

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This month's NRICH site has been inspired by the way teachers at Kingsfield School in Bristol work with their students. Following an introduction to a potentially rich starting point, a considerable proportion of the lesson time at Kingsfield is dedicated to working on questions, ideas and conjectures generated by students.



It links the idea of a geometric sequence with analysis of a parabola and can lead to generalisations from the graphs that can be proved algebraically.

Possible approach

The activity could work well with students working in small groups. Each group could take a different geometric sequence and then formulate several equations of the form $y=ax^2+2bx+c$, where $a$, $b$ and $c$ are three consecutive terms from the sequence. After plotting the graphs, ask students to comment on key similarities and differences between the graphs.

Collect together each group's findings on the board, noting down the sequence they chose to use and any similarities and differences between the graphs they noticed.

In order to prove any conjectures the group suggests, some work on how to express a general geometric sequence may be needed. There is ample opportunity to practise factorising quadratic equations (including those with coefficient of $x^2$ not equal to $1$) while working towards an algebraic explanation for the patterns that occur.




Key questions

What is the same about each parabola?
What changes?
What happens when you try different geometrical sequences?

Possible extension

A very challenging follow-up could be to ask students to explore cubic graphs where terms from a geometric sequence could be substituted in to give similar results.



Possible support

$$y=ax^2+2bx+c$$

Start with $a=1, b=2, c=4$ - what does the graph look like? What key points does it pass through?

Then try $a=2, b=4, c=8$, $a=4, b=8, c=16$ and so on. Look for similarities and differences between the graphs. 















You may also like

Converse

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

Consecutive Squares

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Parabolic Patterns

The illustration shows the graphs of fifteen functions. Two of them have equations y=x^2 and y=-(x-4)^2. Find the equations of all the other graphs.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo