Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pair Products

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Pair Products printable worksheet
 

Choose four consecutive whole numbers.

Multiply the first and last numbers together.

Multiply the middle pair together.

Choose several different sets of four consecutive whole numbers and do the same.

What do you notice?

Can you explain what you have noticed? Will it always happen?


 

Click below to see how Charlie and Alison explained what they noticed.

Charlie said:
 

I noticed that the product of the outer pair was always $2$ less than the product of the inner pair.

I can explain this by labelling the four consecutive numbers $n, n+1, n+2, n+3$.

Outer pair: $n(n+3) = n^2 + 3n$

Inner pair: $(n+1)(n+2) = n^2 + 3n + 2$

Alison said:
 

I drew a diagram, in which the product of each pair is represented by the area of a rectangle:

The outer pair is represented by the red rectangle.

The inner pair is represented by the blue rectangle.

The purple area is common to both.

The area of the red strip will always be two units less than the area of the blue strip.

Therefore, the product of the outer pair is always two less than the product of the inner pair.


 

Instead of doing lots of calculations, can you use these representations to compare the product of the first and last numbers with the product of the second and penultimate numbers, when you have:
 

  • $5$ consecutive whole numbers
     
  • $6, 7, 8, \ldots x$ consecutive whole numbers
     
  • $4$ consecutive even numbers
     
  • $4$ consecutive odd numbers
     
  • $5, 6, 7, 8, \ldots x$ consecutive even or odd numbers
     
  • $4$ consecutive multiples of $3, 4, 5 \ldots $
  • Decimals that differ by $1$, such as $1.2, 2.2, 3.2, 4.2$
     
  • Four numbers going up in $3$s, such as $2, 5, 8, 11$
     
  • Four numbers going up in $\frac{1}{2}$s, such as $4, 4\frac{1}{2}, 5, 5\frac{1}{2}$
     

Make up a few similar questions of your own. Impress your friends by giving them a calculator and 'predicting' what will happen!
 

Click here for a poster of this problem.

You may also like

Diophantine N-tuples

Can you explain why a sequence of operations always gives you perfect squares?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Sixational

The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo