Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pair Products

Age 14 to 16
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem provides a purpose for practising the routine algebraic procedure of expanding brackets.

For students who are unfamiliar with algebra, this problem is an excellent context for observing, conjecturing and thinking about proof. It can be a good introduction to the power of algebra, and to a related geometrical interpretation.
 

Possible approach


This printable worksheet may be useful: Pair Products.
 
"Choose four consecutive numbers, multiply the outer pair and the inner pair. What were your two answers?"
Write a selection of students' responses on the board.
"What do you notice?" The inner pair product is always two more than the product of the outer pair.
 
"Will this always happen? Can you explain why?"
Give students some time to discuss with their partner why the answers always differ by two. Circulate and listen out for interesting insights.
Bring the class together and share any explanations they have found. Perhaps share Charlie's and Alison's representations from the problem if they haven't emerged.
"We've worked out what happens when you find the product of the inner and outer pair of a set of four consecutive numbers. What questions do you think a mathematician might ask next?"
Write students' suggestions up on the board. If suggestions are not forthcoming, introduce some of the ideas listed in the problem.
 
"You should be able to work out what will happen in the situations you've suggested using one of the powerful representations we've looked at, without having to try out lots of numerical examples first. Of course, if you want, you can use a numerical example to verify what you've done."
 
Students could be offered a choice of which situations to work on. Alternatively, you may want everybody to work on a series of related problems (5, 6, 7 ... n consecutive numbers, for example) that will lead to a generalisation.
One nice plenary activity is to challenge students to work out quickly what the difference in pair products will be for a randomly chosen sequence of numbers.

One blogger wrote a piece on his views of the problem, which you can read here.
 

Key question

Is there a way to represent the pair products that will explain the patterns you noticed?

 

Possible support


This problem could also be approached purely numerically, as an exercise in developing fluency with multiplication tables while looking for pattern and structure.
 
In getting started, there is a dynamic image of Alison's representation that could be used to help students to see why the difference will always be 2.

     

    Possible extension

     
    This problem only operated on the end numbers and the 'end but one' numbers. Invite students to generalise further by looking at other pairs within the sequence.
    For example, if you have an odd number of consecutive numbers, what's the difference between the product of the end numbers and the square of the middle number?

     

     

     

    You may also like

    Diophantine N-tuples

    Can you explain why a sequence of operations always gives you perfect squares?

    DOTS Division

    Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

    Sixational

    The nth term of a sequence is given by the formula n^3 + 11n. Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. Prove that all terms of the sequence are divisible by 6.

    • Tech help
    • Accessibility Statement
    • Sign up to our newsletter
    • Twitter X logo

    The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

    NRICH is part of the family of activities in the Millennium Mathematics Project.

    University of Cambridge logo NRICH logo