Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

All Tangled Up

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

This problem follows on from Twisting and Turning and More Twisting and Turning

In More Twisting and Turning, you were invited to find a strategy to reduce any fraction $\frac ab$ to zero using only the operations Twist ($x \mapsto x+1$) and Turn ($x \mapsto -\frac1x$). In this problem, we will call these operations $T$ for twist, and $R$ for rotate (since 'turn' rather unhelpfully begins with a T too!).

To end up at $\frac{4}{5}$, you can carry out the following sequence of operations: $T,T,T,T,T,R,T$ which could be written more concisely as $T^5RT = \frac45$.

Can you find a sequence of operations that leads to $\frac{9}{10}$?
What about $\frac{23}{24}$?

Can you find a sequence of operations that gets from $0$ to the fraction $\frac{n}{n+1}$?

Now try the following sequences:
  • $T^2RT$
  • $T^2RT^2RT$
  • $T^2RT^2RT^2RT$
What do you notice?
Can you find a way to reach $\frac{1}{10}$?
Can you prove that the pattern will continue?
 
Can you find other patterns that lead to interesting fractions?

Can you prove that it is possible to start at zero and reach any fraction using only the operations $T$ and $R$?

You may also like

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

There's a Limit

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Not Continued Fractions

Which rational numbers cannot be written in the form x + 1/(y + 1/z) where x, y and z are integers?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo