Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Blood Buffers

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

  • Warm-up
  • Try this next
  • Think higher
  • Read: mathematics
  • Read: science
  • Explore further
 

In this question [$A$] means the concentration of the chemical $A$ at equilibrium.

For a balanced chemical equation, where $A, B, C$ and $D$ are chemicals in aqueous solution and $a, b, c, d$ are whole numbers,
$$ aA + bB \rightleftharpoons cC + dD+ eH_2O $$
the law of mass action tells us that for a fixed temperature, there is a constant $K$ (called the equilibrium constant) such that
$$
\frac{[C]^c[D]^d}{[A]^a[B]^b} = K
$$
(note the absence of the solvent concentration $[H_2O]$ ).
In the blood, the carbonic-acid-bicarbonate buffer prevents large changes in the pH of the blood. Chemically, it consists of two reactions which are simultaneously in equilibrium


$$H^+ +HCO^-_3+H_2O\rightleftharpoons^{K_1} H_2CO_3+H_2O \rightleftharpoons^{K_2} 2H_2O+CO_2$$
Show that
$$
pH =pK -\log \left(\frac{[CO_2]}{[HCO^-_3]}\right)\quad \mbox{where }K=\frac{1}{K_1K_2}
$$

Think about this equation. It shows that the pH of the blood is dependent on the ratio of the concentrations of $CO_2$ and $HCO^-_3$. These are large in the blood, so small changes in the relative concentrations leads to very small changes in the pH of the blood. They act as a 'buffer' against pH change.


Now, make a new variable $x$ to be the fraction of the buffer in the form of $HCO^-_3$. Thus,
$$
x = \frac{[HCO^-_3]}{[HCO^-_3]+[H_2CO_3]+[CO_2]}
$$
Show that
$$
pH = pK-\log\left(\frac{1}{x}-1 -K_1[H^+]\right)
$$
By taking the value $pK=6.1$ and treating $K_1[H^+]$ as very small, reproduce the titration curve




Extension:
1. Why is it numerically valid to ignore the $[H^+]$ term in the equation giving rise to the graph?
2. With the assumption that $K_1[H^+]=0$, use calculus to show that the second derivative of the pH is zero when $x=0.5$. Graphically, what does this correspond to?

 

You may also like

Very Old Man

Is the age of this very old man statistically believable?

bioNRICH

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your study of biology at A-level and university.

Catalyse That!

Can you work out how to produce the right amount of chemical in a temperature-dependent reaction?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo