Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Kite in a Square

Age 14 to 18
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Teachers' Resources

Why do this problem?

Students often find geometric proofs quite intractable. In this problem, three different ways of proving the same result are presented, jumbled up, so that students can engage with the proofs without having to start from scratch.
 

Possible approach

This printable worksheet may be useful: Kite in a Square
These printable cards for sorting may be useful: Coordinates, Similar Triangles, Pythagoras

Show the image from the problem.
"ABCD is a square. M is the midpoint of AB. What fraction of the total area is shaded?"
Give students some time to have a go at the problem. While they are working, circulate and see the methods they are trying.

After a while, bring the class together again and acknowledge that the answer may not be immediately obvious.

"I've been given the methods used by three different people. Unfortunately each method has got jumbled up. Can you put the statements in the right order to build a logical argument?"

Hand out envelopes with each method (Coordinates, Similar Triangles, Pythagoras) to pairs or threes. Coordinates is the most accessible method, and Pythagoras the most challenging. It is a good idea to print each method on different coloured card to avoid them getting muddled up.
"With your partner, make sense of each step and put the cards in the right order.
Once you've completed the task, can you recreate each method for your partner without looking at the cards?"

Once students have spent enough time engaging with the three methods, making sense of them and recreating them for themselves, bring the class together. Invite students to present each method to the class, and finally discuss the merits and disadvantages of each.

The interactive proof sorters which are available can be used as an alternative to the printable cards, or for students to check their suggested arrangements of the cards.
 

Key questions

For Coordinates method:

  • what are the equations of the lines?
  • where do they intersect?

For Similar Figures method:

  • which angles are the same?
  • what lengths do we know?

For Pythagoras method:

  • where are the right angles?
  • what lengths do we know?

Possible support

Start by drawing a square on dotty paper (2 by 2 to start with) and explain that vertices and mid-points can be joined with straight lines.

Challenge students to find the different fractions of the square that can be shaded.


Possible extension

Enclosing Squares offers a follow-up activity linked to Coordinates.
Take a Square offers a follow-up activity linked to Similar Figures.
Pythagoras Proofs offers a follow-up activity linked to Pythagoras.

 

You may also like

Fixing It

A and B are two fixed points on a circle and RS is a variable diamater. What is the locus of the intersection P of AR and BS?

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo