There are 16 NRICH Mathematical resources connected to Sine rule and cosine rule, you may find related items under Pythagoras and trigonometry.
Broad Topics > Pythagoras and trigonometry > Sine rule and cosine ruleStick some cubes together to make a cuboid. Find two of the angles by as many different methods as you can devise.
A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?
In a right-angled tetrahedron prove that the sum of the squares of the areas of the 3 faces in mutually perpendicular planes equals the square of the area of the sloping face. A generalisation of Pythagoras' Theorem.
Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the area enclosed by PQRS.
Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.
If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?
How far should the roof overhang to shade windows from the mid-day sun?
Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.
Find the sides of an equilateral triangle ABC where a trapezium BCPQ is drawn with BP=CQ=2 , PQ=1 and AP+AQ=sqrt7 . Note: there are 2 possible interpretations.
What is the shortest distance through the middle of a dodecahedron between the centres of two opposite faces?
Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.
P is a point inside a square ABCD such that PA= 1, PB = 2 and PC = 3. How big is angle APB ?
A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?
Four rods are hinged at their ends to form a quadrilateral. How can you maximise its area?
Three semi-circles have a common diameter, each touches the other two and two lie inside the biggest one. What is the radius of the circle that touches all three semi-circles?