Or search by topic
This problem starts by asking students to find which numbers can be expressed as the difference of two square numbers, and then suggests some possible avenues for exploration. This can then be used as a springboard to generalisations and the use of algebra for justifications and proof. Along the way, students have the opportunity to make use of the
important identity $a^2 - b^2 = (a + b)(a - b)$.
An alternative to this problem which some students may find more accessible is Hollow Squares.
Bring the class back together and invite those students who have useful insights to share them with the class. You may wish to introduce an algebraic and a geometric approach to proving one particular conjecture: for example, that the difference between consecutive squares is always odd. A diagrammatic method for calculating the difference of two squares is explored in the problem Plus Minus.
Now give the class some time to work on proving their conjectures.
You may also wish to set the following challenge:
"In a while, I'm going to give you a number and ask you to quickly find one or more ways to write it as the difference of two squares, or to convince me that it can't be done. Can you develop a strategy that will help you do this?"
Your plenary could involve students presenting their findings to the rest of the class. Expect students to be clear and rigorous in their justifications. Encourage them to challenge any proofs that lack clarity and rigour, and suggest ways of improving them.
1 | 2 | 3 | |
1 | $1^2-0^2$ | ||
2 | |||
3 | $2^2-1^2$ | ||
4 | $2^2-0^2$ | ||
5 | $3^2-2^2$ | ||
6 | |||
7 | $4^2-3^2$ | ||
8 | $3^2-1^2$ | ||
9 | $5^2-4^2$ | $3^2-0^2$ |
Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?