Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Ford Circles

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
Navjot from Sherborne Qatar School sent us a lovely clear explanation:

Explore the value of ad−bc for the touching circles that you have found. What do you notice?

I noticed that $ad-bc$ was always equal to $\pm 1$. This happened when the pair
of fractions were Farey neighbours.
For example, $\frac01, \frac 11: (0 \times 1) - (1 \times 1) = -1$
Or, $\frac 1{11}, \frac 1{12}: (1 \times 12) - (1 \times 11) =1$

In both of these cases, the two circles were tangent to each other.

Can you prove that for any touching circles in the interactivity above, $|ad−bc|=1$?

So it is given to us that the centre of circle $A$ is  $\left(\frac ac , \frac1{2c^2}\right)$ with radius $\frac1{2c^2}$,
and the centre of circle B is $\left(\frac bd, \frac1{2d^2}\right)$ with radius
$\frac1{2d^2}$.

To show $|ad-bc| = 1$, I found the length between the centres of the two circles and equated it to the sum of the radii, which is also the length between the two points.

$|AB| =\sqrt{(\frac ac - \frac bd)^2 +(\frac1{2c^2} - \frac1{2d^2})^2)} = \frac1{2c^2} + \frac1{2d^2}$

$\Rightarrow \sqrt{\left(\frac{ad-bc}{cd}\right)^2 + \left(\frac{2d^2-2c^2}{4c^2d^2}\right)^2} = \frac{2d^2+2c^2}{4c^2d^2}$

$\Rightarrow \frac{(ad)^2 - 2abcd + (bc)^2}{(cd)^2}+ \frac{4d^4-8(dc)^2 + 4c^4}{16(cd)^4} = \frac{4d^4+8(dc)^2+4c^4}{16(cd)^4}$

$\Rightarrow \frac{(ad)^2 - 2abcd +(bc)^2}{(cd)^2}=\frac{(4d^4 + 8(dc)^2 + 4c^4) - (4d^4 - 8(dc)^2 + 4c^4)}{16(cd)^4}$

$\Rightarrow \frac{(ad-bc)^2}{(cd)^2} = \frac{16(cd)^2}{16(cd)^4}$
$\Rightarrow (ad-bc)^2=1$
$\Rightarrow |ad-bc|=1$.

We also received solutions from Sarith from Royal College in Sri Lanka, and Vignesh from Hymers College in the UK. You can read their solutions below:

Sarith's Solution
Vignesh's Solution 



You may also like

Circles Ad Infinitum

A circle is inscribed in an equilateral triangle. Smaller circles touch it and the sides of the triangle, the process continuing indefinitely. What is the sum of the areas of all the circles?

Set Square

A triangle PQR, right angled at P, slides on a horizontal floor with Q and R in contact with perpendicular walls. What is the locus of P?

Wrapping Gifts

A box of size a cm by b cm by c cm is to be wrapped with a square piece of wrapping paper. Without cutting the paper what is the smallest square this can be?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo